
Evaluating A BASIC Approach to
Sensor Network Node Programming

J. Scott Miller

jeffrey-miller@northwestern.edu
Northwestern University

Peter A. Dinda

pdinda@northwestern.edu
Northwestern University

Robert P. Dick

dickrp@eecs.umich.edu
University of Michigan

Abstract
Sensor networks have the potential to empower domain

experts from a wide range of fields. However, presently they
are notoriously difficult for these domain experts to program,
even though their applications are often conceptually simple.
We address this problem by applying the BASIC program-
ming language to sensor networks and evaluating its effec-
tiveness. BASIC has proven highly successful in the past in
allowing novices to write useful programs on home comput-
ers. Our contributions include a user study evaluating how
well novice (no programming experience) and intermediate
(some programming experience) users can accomplish sim-
ple sensor network tasks in BASIC and in TinyScript (a prin-
cipally event-driven high-level language for node-oriented
programming) and an evaluation of power consumption is-
sues in BASIC. 45–55% of novice users can complete simple
tasks in BASIC, while only 0–17% can do so in TinyScript.
In both languages, users generally are most successful using
imperative loop-oriented programming. The use of an inter-
preter, such as our BASIC implementation, has little impact
on the power consumption of applications in which computa-
tional demands are low. Further, when in final form, BASIC
can be compiled to reduce power consumption even further.

Categories and Subject Descriptors
D.2 [Software Engineering]: Metrics; C.3 [Special-

Purpose and Application-Based Systems]: Real-time and
Embedded Systems

General Terms
Human Factors, Languages, Measurement

Keywords
BASIC, Cyber-Physical Systems, Sensor Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’09, November 4–6, 2009, Berkeley, CA, USA.
Copyright 2009 ACM 978-1-60558-748-6 ...$5.00

1 Introduction
Wireless sensor networks (WSNs) can be viewed as

general purpose distributed computing platforms defined by
their spatial presence and an emphasis on environment mon-
itoring. The most prominent applications of sensor networks
have thus far included monitoring applications with a variety
of requirements, although WSNs need not be limited to these
tasks. While WSNs are currently of great research interest, it
is ultimately communities and users outside of these areas—
application domain experts—that have the most to gain from
the functionality that WSNs can provide. We focus on ap-
plication domain experts who are programming novices and
not WSN experts. Our goal is to make the development of
WSN applications by such individuals and groups tractable
and, ideally, straightforward.

To deliver the power of wireless sensor networks into the
hands of such application domain experts, the barrier to entry
must be modest. In terms of raw hardware, this point has al-
ready mostly been reached, provided custom hardware is not
needed. However, through our interaction with a civil engi-
neering group that is designing, implementing, and deploy-
ing an autonomous (structural) crack monitoring applica-
tion [17, 9], we have become convinced that sensor network
programming languages and systems have not yet reached
this point. Current languages require knowledge of either
very low-level systems development (including the details of
sensor hardware and embedded system design), or high-level
programming concepts and abstractions that are not obvious
to most application domain experts. We have observed that
application domain experts have little programming experi-
ence, most of which is with with simple single-threaded im-
perative programming models.

It cannot be assumed that an application domain expert
who stands to benefit from a WSN possesses a background
in embedded systems development, can devote time to a pro-
gramming curriculum, or has the funds to hire an embedded
systems expert. Even if such an expert is available, the ca-
pabilities of a sensor network are tightly coupled to its hard-
ware and software design, making any disconnect between
the application domain expert and embedded systems expert
a barrier to achieving the domain expert’s goals.

It is vital that application domain experts not be confused
with traditional application developers. A Unix, Windows,
or web developer may be able to stretch his capabilities to
write a WSN application. For example, someone familiar

with writing Microsoft Windows applications in C++ or C#
already has some of the conceptual framework needed to
grasp event-driven programming in a C-like language on a
sensor network node. From our experiences with application
domain experts in the broad area of structural crack moni-
toring, we have come to the conclusion that experts gener-
ally start with less programming background than applica-
tion programmers. For this reason, it is unlikely that pro-
gramming languages and concepts that have found strong
adoption and demonstrated productivity gains in the WSN or
general software development communities will give appli-
cation domain experts similar results. We can only assume
that the application domain expert will remain a perpetual
novice1, or, at best, an intermediate programmer.

To evaluate the programming backgrounds of domain ex-
perts, we conducted a survey of graduate students and fac-
ulty working both in the sensor network domain as well as
domain experts in areas that can benefit from the monitoring
capabilities of modern sensor networks. Our results, which
we present in Section 3, show that while the sensor network
experts generally have substantial programming experience
across a range of general-purpose programming languages,
domain experts reported limited experience with a smaller
set of programming languages.

The sensor network research community has made several
efforts to simplify the development of WSN applications by
creating a range of languages and programming systems de-
signed specifically for the platform (see Section 2 for more).
These languages span a number of programming paradigms
and each targets a different type of developer.

Our work continues and expands upon this direction by
bringing less-experienced programmers, including applica-
tion domain experts as previously described, into the core of
the language design and implementation “loop” via rigorous
user studies. We run user studies to (1) evaluate how our tar-
get users respond to different languages and systems, (2) de-
termine how quickly and correctly they can complete tasks
using each language and how power-efficient the solutions
are, and (3) inform future language, system, and interface
design for these users.

This paper reports on our efforts to apply user studies to
the problem of making WSNs easy to program by appli-
cation domain experts. We focus on the problem of pro-
gramming individual nodes, including sensing, sending in-
formation back to a centralized aggregator, and node-based
actuation. Although this problem is more limited in scope
than general WSN programming, and the kinds of program-
ming supported by other languages/programming systems, it
is nonetheless an interesting problem as node-level program-
ming has broad utility, especially for applications in which
complex network communication, such as aggregation, is not
needed.

Extrapolating from the undeniable success that the
BASIC programming language had in the late 1970s and

1We use this term in the sense meant by Dineh Davis [7] who
argues that instead of searching for ways to make users experts in
the use of computers and technology, we should seek ways to make
them better novices.

early 1980s in engaging extreme novices—even children—
in programming, and the similarities between the home com-
puter platforms of that era and the sensor network nodes of
today, we consider the use of BASIC as a WSN node pro-
gramming language. Our specific contributions follow.

• We surveyed domain experts and sensor network experts
to compare their programming backgrounds.

• We ported a small BASIC interpreter to a modern sensor
network node and OS, extending the language and
implementation with easy-to-understand features for
communication, power management, sensing, and
actuation. The semantics of the language were refined
using observations of the successes and struggles of
novice and intermediate programmers using it.

• We created a simple integrated development environment
(IDE) and tutorial for our extended BASIC, both
targeting the kinds of users described earlier.

• We evaluated our extended BASIC, IDE, and tutorial by
conducting a rigorous user study involving novice and
intermediate programmers.

• We also evaluated TinyScript, a high-level, event-driven
node-level programming language for sensor networks
using exercises identical to those used to evaluate BASIC.

• We measured the computational and power costs
involved in using our interpreter.

Beyond letting us evaluate the utility of our BASIC, the user
studies noted above also provide a useful characterization of
user reaction to TinyScript, and prototypes for future work.2

We found the following.

• The programming background of domain experts is
considerably different from that of sensor network
experts. Their background is similar to the intermediate
participants in our study.

• Novice users are able to use our system to implement
simple sensor network programs on MicaZ motes that
include data acquisition, communication, and actuation.

• While results are task-dependent, 45–55% of novice
users are likely to complete simple tasks in BASIC, while
only 0–17% are likely to do so in TinyScript.

• Participants with programming experience (intermediate
users) had similar rates of success using BASIC and
TinyScript.

• Many participants struggled with developing applications
using an event-driven programming model.

• While our system incurs a significant computational
overhead (the interpreted code is, not surprisingly, much
slower than compiled C), for common application
patterns in which the hardware spends significant time
asleep, this overhead and its concomitant power costs are
negligible. A “sense-and-send” task with a one second
period consumes only 1.5% more power when written in
BASIC. BASIC can be compiled to virtually eliminate
this overhead.

This experience underlines the value of using user stud-
ies to evaluate languages and programming systems target-
ing application domain experts. Our work shows that there is

2See http://www.absythproject.org/ for study materials.

value in using BASIC-like languages in the sensor network
domain and more broadly identified some of the language
features most appropriate for enabling novice programmers.

2 Related Work
The architectural visions of Hill et al [14]; Polastre,

Szewczyk, and Culler [32]; as well as Cerpa and Estrin [4]
have had great impact on sensor network research and de-
sign. Our work is more specifically related to work on sen-
sor network programming languages, measures of software
engineering productivity, and existing applications.

Sensor network programming languages: There are a
number of programming languages, support libraries, and
operating systems for sensor network nodes [12, 24, 1, 22, 5,
20, 11]. They provide support for modular programming and
the use of hardware modules, reaction to events, and some
degree of network abstraction. Some languages focus on
permitting specification of network-wide behavior instead of
specifying the behavior of individual components [13, 28].
Bonivento, Carloni, and Sangiovanni-Vincentelli propose a
platform-based design methodology for wireless sensor net-
works [3]. Recent improvements to sensor network program-
ming environments have been substantial. However, these
advances primarily benefit embedded system design and pro-
gramming experts, not application domain experts.

Existing sensor network programming languages are de-
signed to ease the development and deployment of sensor ap-
plications. The languages borrow their semantics from well-
known programming paradigms, including structured query,
functional, and event-driven styles. The languages differ in
the abstraction they provide for the underlying sensor net-
work, treating the network as either a single logical machine
or a collection of communicating entities.

The Regiment [27], TinyDB [25], and Tables [16] lan-
guages are examples of macro-programming languages in
which the developer writes code that targets the entire sen-
sor network. Heterogeneous execution emerges based on lo-
cal conditions. Regiment follows a functional programming
design that treats each sensor as a stream of data. Regi-
ment allows programmers to partition streams into logical
neighborhoods based on network proximity, allowing event
detection that spans multiple sensors. In TinyDB, the pro-
grammer writes queries to a logical database table represent-
ing sensor values across the network. TinyDB’s SQL-like
syntax is assumed to be familiar to application developers.
Tables, a framework for programming sensor networks that
uses a spreadsheet model (specifically, pivot tables) to de-
scribe tasks, takes a similar approach.

MacroLab [15] is a recently developed Matlab-like,
vector-based, macro-programming language for sensor net-
works. Its macrovector data primitive is a matrix data struc-
ture in which the index in one dimension is the sensor
node. Data collection and aggregation operations are speci-
fied using familiar Matlab matrix operations. To simplify the
choice of data dissemination model, the MacroLab toolchain
optimizes the extent to which computation is distributed ac-
cording to a user-supplied cost function, partially separating
task specification from implementation; however, the pro-
grammer must still specify which operations must be syn-

chronized across the network. Given the relative common fa-
miliarity of domain experts with Matlab (Section 3), Macro-
Lab is likely to be a good fit for domain expert-programmed
applications that demand complex network behavior.

In contrast to such network-level languages, NesC [14],
TinyScript [23], and C (with WSN support libraries) are
node-level programming languages, targeting individual sen-
sors. In practice, however, the model is SPMD (Single Pro-
gram Multiple Data)—the same code generally runs on all
the nodes in the network with the possible exception of a
base station that acts as an accumulator of sensor data. All
of these languages provide an imperative syntax. In both
NesC and TinyScript, high-level program flow is controlled
through events that are triggered by communication, timers,
or are user-defined.

Aside from their scope, these node-level languages tar-
get different kinds of programmers. The C-like syntax of
NesC is more appropriate for programmers with strong C
backgrounds. NesC also uses a form of event-driven pro-
gramming that seasoned developers might be accustomed to
but is unfamiliar to a large class of novice programmers.
TinyScript adopts a more simplified set of semantics in or-
der to make the NesC model more approachable for novices.

In addition to these node-level languages, higher level ap-
plication programming languages have also made inroads on
the WSN space. The Micro .NET Framework [26] and Sun
SPOTS [34] platforms leverage the C# and Java languages,
respectively, which should be familiar to a range of experi-
enced application developers.

The present work focuses on node-level programming
languages and systems for novice users, including applica-
tion domain experts. For the most part, the network-level
and node-level languages just described have the goal of
making expert developers more efficient. The exceptions
are TinyScript (node-level), on which we elaborate below,
Tables, and MacroLab. Tables specifically targets inexperi-
enced users, and MacroLab can arguably support them. In
contrast with our work, however, Tables and MacroLab are
network-level programming system, and, to the best of our
knowledge, have not yet been evaluated in user studies.

TinyScript: The goals of the present paper most closely
resemble those of TinyScript [23], a high-level programming
language that is compiled to the byte-code of the Maté vir-
tual machine platform for sensor networks [22]. TinyScript
is described as “an imperative, BASIC-like language with
dynamic typing and basic control structures such as condi-
tionals and loops.” [21] The creators of TinyScript were early
to expose the interesting problem that we are now working
on: how can one design a language to make sensor network
programming more accessible? Their answer, TinyScript,
is a dynamically typed, event-driven imperative language.
TinyScript applications result in relatively few high-level
Maté instructions, allowing for straightforward application
distribution and updates within a sensor network.

Our work differs from TinyScript in several ways. First,
BASIC is a simple imperative language with no event model.
We have added extensions to support node-level programing.
Our implementation is a simple tokenizing interpreter (which
leverages the uBASIC codebase of Adam Dunkels [10]) with

no underlying byte-code virtual machine.
A second difference is that we have focused, both in the

language and in the presentation of the language via the IDE,
on reducing complexity for shorter programs. A program in
our system is represented as a single source code file, dis-
played (and hidden) in a custom IDE. All control flow is in
this file and is immediately visible to the programmer. In
contrast, in TinyScript, the programmer creates a separate
code block for each handled event, with code in one handler
being able to interact with that in another. The TinyScript
IDE further separates each event handler by allowing the
programmer to view and modify only one handler at a time.
There is no notion of scope in our BASIC—all variables are
at global scope. In contrast, variables in TinyScript are ei-
ther locally scoped to each event handler or globally scoped
across all handlers. All variables in our BASIC are either in-
tegers or arrays of integers. In contrast, in TinyScript, data
is represented by several types and the application developer
must at times explicitly convert among types.

TinyScript’s event-driven model does allow for more
complex data aggregation techniques than we explore in this
work. Functions are provided for broadcast and base station
communication that can, with some care, be used to imple-
ment in-network aggregation. However, it is unlikely that
this abstraction is adequate for specifying applications with
substantial data aggregation. In contemporaneous work [2],
we found that inexperienced programmers struggle to apply
these abstractions to WSN applications with simple aggre-
gation. In this work, we focus on node-level operation with
simple, base station oriented communication.

The extreme simplicity of BASIC makes it unsuitable for
the development of large software projects, and event-driven
control flow, scoping, and typing should be minor issues for
an experienced application developer. However, WSN nodes
are very resource constrained, so large software is physi-
cally impossible, and our target user is the novice, for whom
events, scoping, and typing are challenges.

We show here how these differences affect application
development for novice and intermediate users by carrying
out user studies comparing BASIC and TinyScript. We ini-
tially considered a comparison against NesC, but it quickly
became clear that it was unlikely that novice or intermediate
programmers would make much progress completing tasks
in the time generally available in a user study. In comparing
two languages, it is difficult to precisely quantify the effect of
different aspects of the programming model and the language
semantics on programmer efficacy, potentially conflating the
two. In our study, we provide qualitative observations based
on collected screen-captures to help alleviate this issue.

Evaluating our system with novice and intermediate users
is a key component of our work. We have intentionally
sought out such users to understand how well our design suc-
ceeds at enabling sensor network development by them, and
to inform future language improvements.

Archetype-specific languages: In contemporaneous
work [2], we surveyed a large set of existing, deployed sen-
sor network applications and clustered them to arrive at a
set of seven sensor network application archetypes. These
archetypes capture applications with a range of complex net-

Response — average (stddev)
Question Domain Experts WSN Experts

Count 4 7
Largest program written (LOC) 600 (935) 93,614 (182,558)
Largest program modified (LOC) 413 (440) 156,286 (154,132)

LOC changed/added 81 (146) 3,357 (5,419)
Number of languages known 4 (2.6) 8.9 (2.5)

Familiarity with them (Leikert) 4.2 (1.9) 5.1 (1.5)

Figure 1. Programming background survey.

work behaviors that are generally best captured in network-
oriented languages. We advocate the creation of a language
for each archetype. However, there is a significant set of
applications for which a node-oriented programming lan-
guages, such as our BASIC, are well suited. Such applica-
tions are typically homogeneous systems requiring periodic
or event-driven sensing, actuation, and limited aggregation.

Productivity measures: Although a range of software
engineering metrics exist [18], we are unaware of any pro-
posed metric or benchmark for sensor network application
programming by novices. Work developing metrics for eval-
uating students in introductory programming courses [8] is
related, but doesn’t consider the power concerns and envi-
ronmental coupling of sensor network applications.

All of the sensor network programming languages and
systems discussed earlier include abstractions whose aim is
to simplify the process of writing code. Across this varied
landscape of languages, there is little quantification of how
well each language suits the needs of different user com-
munities, particularly application domain experts acting as
novice programmers. As far as we are aware, there is no
agreed upon set of benchmarks to assess the strengths or
weaknesses of each language. This degree of choice is com-
mon among languages targeting expert programmers, but
likely overwhelming for novices. Our work includes the
rudiments of an evaluation strategy that could provide data
for ranking systems in terms of their utility for novices.

3 Experience of Domain Experts
A natural question that arises when attempting to target

domain experts, as we do, is what the programming skillsets
of such experts are. Our choice of BASIC, the design of our
study, and the selection of participants is informed by our in-
tuition that many domain experts have limited programming
experience, and what programming experience they do have
may not map well to sensor networks.

To evaluate this intuition, we created a 10 minute on-
line survey that attempts to quantify programming back-
ground.3 The survey asked respondents about their program-
ming background, including the size of the largest programs
they have written. The survey also solicits familiarity with a
range of programming languages and allows the respondent
to add any additional languages that they have encountered.
We then asked our colleagues at five institutions to complete
the survey and forward it to others working in sensor net-
works. The survey was completed by both sensor network
experts and application domain experts.

Figure 1 shows the results of the survey. The most im-
portant observation is that there is a stark difference in pro-

3We considered using programming aptitude tests [30], but such
tests are quite dated, controversial, and/or too cumbersome.

gramming background between sensor network experts and
domain experts, with domain experts having far more limited
programming experience in terms of languages, program-
ming styles, and lines of code written. Three of the domain
experts reported largest program sizes of 200 lines of code
or less. The domain experts surveyed reported programming
experience in a small number of imperative languages, with
MATLAB the most popular (3 participants), followed by C,
C++ and Fortran.

The domain experts in the survey roughly correspond to
the intermediate users in the study that we describe in Sec-
tion 6.1, and the structural monitoring domain expert imple-
mentation work described in Section 6.3. While the domain
experts surveyed have more programming experience than
the novice users in our study, the use of the feedback from
the novice users was invaluable for improving the language.

4 Why BASIC?
As its name implies, the Beginners All-purpose Symbolic

Instruction Code (BASIC) is specifically designed to provide
programmers with a language that is complete, simple and
easy to understand [6]. A grammar for early versions of BA-
SIC confirms this: the language does not contain features
now considered necessary for the creation of large, main-
tainable applications such encapsulation, user-defined types
or in some cases even local variables.

Why then should we give users a programming language
that is primitive when compared to its more modern peers?
Many programming constructs have come about to promote
code maintainability as an application grows in size. For sen-
sor network applications characterized by relatively simple
high-level behavior, such features are not necessary. Main-
tainability of tiny code bases is often easy in any language.

The simple syntax offered by BASIC minimizes the num-
ber of concepts that need to be understood by the novice pro-
grammer. The work of Van Someran [33] suggests that suc-
cessful programmers must understand the execution model
of their languages and BASIC has what is arguably one of
the most simple execution models. Application domain ex-
perts view programming sensor nodes as a means of con-
ducting a single aspect of their research. Given this, they
have minimal time to spend in learning programming con-
cepts, particularly if those concepts are not critical for the
typically small programs they write. Furthermore, if the fre-
quency at which they program is low, domain experts may
forget programming concepts before reusing them. Thus it is
vital that domain experts be able to quickly “context switch”
into programming, even if they haven’t used those skills in
some time. BASIC’s extreme simplicity has the advantage
of making this easier.

It is important to indicate what specifically we mean by
BASIC. Although its original developers, John Kemeny and
Thomas Kurtz, feel that the language has been corrupted
since its origins at Dartmouth in the 1960s [19], it is prob-
ably more accurate to say that BASIC has come to refer to
an extremely widely varying family of languages. We are
interested in the minimal, interpreted form of BASIC that
emerged on home computers in the late 1970s. Those early
8-bit “microcomputers” were resource-constrained in much

the same way as modern sensor network nodes. At its most
minimal this was TinyBASIC [31], which is essentially the
base language of the work described here.

5 Implementation
Our platform is based on uBASIC [10], an open source

BASIC interpreter developed by Adam Dunkels and avail-
able under BSD license. uBASIC is written in C and is de-
signed for embedded systems. The grammar of uBASIC re-
sembles that of the TinyBASIC programming language. As
described previously, TinyBASIC is a simplified dialect of
BASIC designed for resource constrained computing envi-
ronments and provides only simple programming constructs.
We chose this variant of BASIC because its small memory
requirement enables us to target a wide range of sensor plat-
forms. Dunkels’ web site indicates that uBASIC is eventu-
ally intended for use in “adding a simple scripting language
to severely memory-constrained applications or systems (e.g.
a scripting language to the web server applications in uIP or
Contiki).” Our purpose is to see whether novice program-
mers can write simple sensor network node applications us-
ing an appropriately extended BASIC.

We ported the core interpreter to the Mantis Operating
System [1], a sensor network operating system that provides
a consistent API for reading sensor values, network commu-
nication and threading. The original code combined with our
extensions spans approximately 2,000 lines of code. After
compilation for the Crossbow MicaZ, our interpreter occu-
pies 38 kB of flash. For comparison, an empty Mantis ap-
plication has a 29 kB footprint when compiled with the same
libraries. Our implementation is sufficiently compact that we
may later add more complex protocols for routing and power
management. Language and feature extensions prompted by
our user studies are described in Section 6.2. The interpreter
must be programmed directly through the serial connection.
This allows for rapid development but limits the extent to
which motes can be reprogrammed after being deployed.

Language design and extensions: We extended the BA-
SIC grammar to include statements necessary for sensor
network applications. Reading sensor values occurs with
the SENSE statement, which take an expression indicating
which sensor to read from (onboard MicaZ sensors are sup-
ported) and the name of the variable in which the value is to
be stored. An analogous ADC statement is included for read-
ing arbitrary ADC channels. The SENSE and ADC state-
ments follow the semantics of the INPUT statement found in
almost all BASIC implementations.

The LED statement controls the onboard LEDs on the
platform. The LED statement is followed by a number spec-
ifying which LED is being manipulated and an expression
indicating if the LED is to be turned on or off. A similar
BUZZ statement exists to control the sounder found on many
Crossbow sensor boards. A general DAC statement allows
for arbitrary actuation control.

The SLEEP statement allows the programmer to halt op-
eration for a desired duration. SLEEP directly maps to the
thread sleep function provided by Mantis OS, which puts the
mote into a low-power state when no thread is scheduled to
run. The SLEEP statement is followed by an expression in-

dicating how long the mote is to sleep, given in milliseconds.
As we will discuss later, it is critical that the novice program-
mer understand the SLEEP statement.

To facilitate debugging, simple syntax checking is pro-
vided through error messages sent to the serial port. The
user can also debug using the PRINT statement, which out-
puts the given expression list to the serial port.

We expose one-hop communication in the form of the
SEND and RECEIVE statements. SEND mimics the func-
tionality of PRINT, but communicates the data using the ra-
dio on the mote. The user can construct a message string to
be broadcast using a combination of static text and integer
expressions. The RECEIVE statement listens for messages
sent with SEND. It mimics the BASIC INPUT statement. In
our studies, we do not expose RECEIVE to the user but in-
stead use it to implement base station functionality.

In response to the user studies, we made several substan-
tial changes to our BASIC implementation, described in 6.2.
These changes would not have been made without observa-
tion of the study group and the code they produced.

Development environment: We have created a simple
integrated development environment (IDE) for programming
the sensor. When programming, the sensor is attached to
the development machine via the serial port. When running,
the sensor is detached, and the IDE serves to print messages
received from sensors. Our interface has three main com-
ponents. The first is a field labeled “BASIC Code” that
is used for entering and editing user programs. The sec-
ond field, “Mote Output” displays any messages produced
by the PRINT command as well as any syntax errors gener-
ated by the program. This information comes from the serial
port-connected Mote. The final field, “Base Station Output”
displays any messages broadcast using the SEND message.
These are received using a Mote acting as a promiscuous lis-
tener. The programmer may run and stop their application
from the environment’s menus.

We deliberately designed our IDE to allow novices to pro-
gram the motes without complication or external assistance.
In studying the efficacy of BASIC, we did not want the de-
velopment environment to be a distraction or source of fail-
ure. Furthermore, we wanted our user study to be runnable
without proctor intervention. Our intention with the study is
to focus on the difficulty of the programming language and
thus our interface does not provide additional support in the
form of code completion or line-by-line debugging. We did
not detect usability problems with our user interface during
experimentation.

6 Evaluation
The goals of our evaluation are (1) to assess the ease at

which novice and intermediate users can develop correct and
power efficient simple sensor applications in both BASIC
and TinyScript, and (2) to determine the power and compu-
tational overhead of BASIC.

We addressed the first goal by conducting a user study on
a population of novice and intermediate users, attempting to
mirror the “worst case” of application domain experts. Half
of users with absolutely no previous programming experi-
ence were able to complete simple sensor network tasks in

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8
 BASIC TinyScript

Participant

0

100

200

300

400

500

600

700

L
in

e
s

o
f

C
o
d

e

Figure 2. Largest program sizes for intermediate users in
our two study groups. An additional 23 novice users had
no significant previous programming experience.

BASIC, while that same category of user had much less suc-
cess with TinyScript. Further, we found that novice and in-
termediate programmers both struggle with the event-driven
model provided in TinyScript. To address the second goal,
we directly measured power consumption as a function of
desired compute rate, comparing a BASIC implementation
with a C implementation. We found that interpreted BASIC
is, of course, considerably slower than C, and thus has a far
more limited maximum compute rate. Further, the power
consumption costs grow much faster with increasing com-
pute rate than C. However, for low rates, the two are quite
comparable. For example, for a “sense and send” applica-
tion running at a rate of 1 Hz, BASIC has only a 1.5% power
overhead compared to C. Finally, we show that a compiled
version of BASIC has a power profile similar to compiled C.

6.1 User Study
To study the ease with which novices can use both BA-

SIC and TinyScript to write simple sensor network applica-
tions, we conducted a user study with 40 participants.4 We
recruited participants from a population of current and recent
graduate and undergraduate students at Northwestern Uni-
versity, specifically targeting persons with little to no pro-
gramming experience. Our population includes a mix of stu-
dents with concentration in both the sciences and liberal arts,
and includes roughly equal numbers of participants we con-
sider novice users and intermediate users. Novice users have
no programming experience, while intermediate users have
some programming experience and training. Most interme-
diate users learned to program from classroom instruction.
Users were randomly assigned to BASIC or TinyScript. Fig-
ure 2 illustrates the size of the largest program written by
each of our intermediate users, and shows that that similar
participants were assigned to each language.

For the BASIC study, there were 11 novices and 9 inter-
mediate programmers while for the TinyScript study there
were 12 novice and 8 intermediate programmers. The re-

4The study’s human subjects research protocol was approved
by our Institutional Review Board, which permitted us to recruit
participants from a large and diverse pool, and to pay ($15) for their
time.

sults we report here are summarized according to these ex-
perience levels, so the slight difference in the composition
of the population sizes between the two languages is irrele-
vant. Among intermediate programmers in both groups, the
most commonly reported languages with which the partici-
pant had previous experience were “C/C++” (9 participants),
“Java/C#” (6 participants), and “Matlab” (6 participants).

6.1.1 BASIC Experimental Setup
Our experiments were carried out using two Crossbow

MicaZ motes connected to a single desktop PC running Win-
dows XP. During the study, our software is the only applica-
tion visible to the user. Adjacent to the setup is a desk lamp
the user needs to complete the study. Only one of the motes
could be directly programmed by the participant while the
other acted as a base station for receiving data sent from the
participant’s program. The BASIC interpreter is directly pro-
grammed via a serial connection to the mote throughout the
experiment.

At the beginning of the study, each participant is pre-
sented with a tutorial document explaining the BASIC pro-
gramming language and the sensor hardware. The tutorial
is broadly written to cover the entire BASIC grammar, in-
cluding such topics as variables and control flow. Addition-
ally, the sensor network extensions supporting communica-
tion and reading sensor data are described.

Unless care is taken, the results of a study such as this
may be influenced by the quality of the tutorial. Before we
collected the results presented here, we conducted a prelimi-
nary study evaluating the clarity of the tutorial and iteratively
improved on its design after each study. After evaluating the
tutorial using three participants, we found it sufficiently clear
for use.

Participants are given 30 minutes to familiarize them-
selves with the language and programming environment.
During this time, they can use the IDE and mote to test pro-
gram examples from the tutorial. Participants are not per-
mitted to ask questions about the tutorial. Once the tutorial
is completed, we ask the participant to fill out a questionnaire
asking how difficult the tutorial was to follow, how well the
participant understands BASIC, the clarity of the tutorial ex-
amples, and whether or not the tutorial should be longer. The
next section discusses the questionnaire results.

After this questionnaire is filled out, three exercises are
given. We give the participant 20 minutes to complete each
exercise. The exercises and tutorial are designed such that
no example code in the tutorial can be easily transformed
into an exercise solution. In this way, the set of exercises is
non-trivial and forces the participant to apply the language
primitives learned in the tutorial to succeed. Each exercise
requires the use of at least three language features such as
sensing, duty cycling, and communication.

The exercises follow. Efficient solutions are illustrated in
Figure 3.

1 The user is asked to write a simple program that blinks
one of the LEDs on the sensor hardware at the rate of 1
Hz. This tests the user’s understanding of basic node
programming and the use of actuation. A solution to this
exercise is possible with 4 to 5 lines of code.

2 The second exercise asks the user to write an application
that sends a message to the base station when a desk
lamp next to the user is turned off. This exercise requires
that the user understand BASIC control flow, base station
communication and reading data from the sensors. The
exercise instructs the user to write power-efficient code
and that a response time of 1–2 seconds is adequate.

3 The final exercise transforms the second into an actuation
task in which an LED on the sensor is controlled by
measuring the ambient light. In the exercise, the user is
instructed to illuminate an LED on the mote if the desk
lamp is turned off. Other than this change, the exercises
are identical.

After the participants complete the exercise or time expires,
we ask them to fill out a questionnaire describing the expe-
rience, soliciting how well they understood the problem pre-
sented, the quality of their solution and the extent to which
they felt frustrated throughout the exercise.

Throughout the tutorial and exercises, we periodically
take a snapshot of the user’s program to provide insight into
the process of development and to identify any stumbling
blocks. The final program is also saved so that we can inde-
pendently validate each solution and test its quality.

6.1.2 TinyScript Experimental Setup
We evaluate the TinyScript version distributed with

TinyOS version 1.1.15. Our experimental setup for evalu-
ating TinyScript is nearly identical to that used in the BASIC
study. The changes result from differences between the two
development environments.

The TinyScript evaluation used the same PC as that in
the BASIC study, running a version of Ubuntu Linux in a
VMWare hosted virtual machine.5 While it is reasonable to
suspect our participants are more familiar with Windows XP,
no part of our study had the participants interacting directly
with operating system-level user interface and thus we feel
that the change does not influence our results.

We designed our TinyScript tutorial using existing tutorial
documents created by TinyScript’s authors. We edited these
tutorials into one cohesive document, elaborating on certain
concepts to make them more suitable for extremely inex-
perienced programmers. Further, we changed the tone and
structure of the tutorial to match that of the BASIC tutorial,
making exceptions to increase the clarity of the language. As
with BASIC, we iterated on the TinyScript tutorial using par-
ticipants recruited from the same population used during the
final study as to maximize the tutorial’s clarity. In all, five
participants were used. We also made a copy of the tutorial
available to the original author of the TinyScript materials.

Any study comparing two languages for programmer ef-
ficacy is subject to differences in the educational materials
available for each language. We have made a significant ef-
fort to ensure similar quality materials through the means de-
scribed above, and by seeking comments on the TinyScript
materials from the language authors. Our materials for both
languages are available online.

The remainder of the study, including the time allocated

5Existence of the VM is invisible to the user.

10 led 1 0

20 sleep 1000

30 led 1 1

40 sleep 1000

50 goto 10

10 sense 0 a

20 if a < 800 then send "light off"

30 sleep 1000

40 goto 10

10 sense 0 a

20 if a < 800 then led 1 1

30 if a > 800 then led 1 0

40 sleep 1000

50 goto 10
Exercise 1 Exercise 2 Exercise 3

Figure 3. Example efficient solutions for the exercises.

to the tutorial and exercises and exercise ordering, was un-
changed for the TinyScript group.

6.1.3 Results
Tutorial questions: Following the tutorial, we asked par-

ticipants in each language study group to rate their experi-
ence with the tutorial by rating their degree of agreement
with four statements. We used these questions to get a sense
for the participants’ response to the language, independent of
their performance on the exercises. The four follow: “I felt
the tutorial was easy to understand,” “I feel that I understand
[the language],” “I followed the tutorial and tried many of
the examples,” “I feel that the tutorial should be longer.” A
standard Leikert scale ranging from 1 to 7 was used here and
in all noted figures. 1 corresponds to “strongly disagree” and
7 corresponds to “strongly agree.” The results for each of
the prompts are given in Figure 4. They are broken down by
language, and by novice and intermediate users. The graphs
are standard Box plots showing the distribution of responses
(25th, 50th, and 75th percentiles), with outliers shown indi-
vidually.

Overall, we find similar trends across both languages.
Participants show slightly less confidence with TinyScript
as indicated by their response to “I felt the tutorial was
easy to understand”, with inexperienced TinyScript pro-
grammers giving the lowest ratings. Novice programmers
using TinyScript indicated slight agreement with the prompt
“I feel that the tutorial should be longer”. We attribute these
differences to the difference in complexity between the two
languages. Because the wording of the question did not dif-
ferentiate between the difficulty of the concepts and the clar-
ity of their descriptions, we suspect that participants con-
flated those two concepts, resulting in lower ratings for the
TinyScript group.

User experience of tasks: After working on each exer-
cise, we asked participants to rate their experience levels.
For each exercise, we asked the following questions, using
the same scale used in the tutorial questions: “I understood
what the exercise was asking me to do,” “I was able to com-
plete the exercise in the provided time,” and “I felt frustrated
throughout the exercise.” In Figure 5 we present these re-
sults. For the first question, we see similar results between
the two languages, indicating that the communication of our
exercises does not seem to have introduced additional varia-
tion between the languages. However, in the remaining ques-
tions we begin to see more differentiation between the BA-
SIC and TinyScript programmers.

Measured performance on tasks: In Figures 6(a)–(d),
we present all data about the measured performance of users
in our study, as well as summaries by language and expertise.
As Figure 6(a) shows, all intermediate BASIC programmers

were able to complete at least one of the exercises.
In examining the BASIC solutions provided by partici-

pants, we discovered a common error in exercise 2 in which
participants reversed the usage of the PRINT and SEND
statements. Recall that the semantics of the two statements
are nearly identical, producing output in either a “Base Sta-
tion Output” panel in BASIC IDE in the case of the SEND
statement or a nearly identical output window labeled “Mote
Output” in the case of the PRINT statement. We attribute the
confusion between the two statements to this subtle distinc-
tion in our user interface that fails to highlight the differences
in medium. We note solutions that use the PRINT statement
instead of SEND but are otherwise correct in the column ti-
tled “Correct (PRINT).” As will be discussed, many partic-
ipants using TinyScript experienced an identical confusion
while attempting to complete the second exercise.

Intermediate programmers: Ignoring errors caused by
this confusion, we find completion rates for intermediate
programmers in BASIC were 100%, 89%, and 67% for ex-
ercises 1, 2, and 3, respectively. In Figure 6(b), we present
the comparable results for the intermediate programmers us-
ing TinyScript. For the first and third exercises, the group
performed approximately as well as their counterparts using
BASIC, with correct solutions provided by 100% and 57%
of the participants. However, this trend does not continue for
participants attempting the second exercise, in which none of
the TinyScript users were able to provide correct solutions.

Inspection of participants’ solutions for exercise 2 reveals
that many struggled with using the array abstraction provided
by TinyScript. Use of the arrays are required for complet-
ing the exercise as the communication functions provided by
TinyScript exclusively use array arguments. While this fact
makes direct comparison between BASIC and TinyScript
problematic for this exercise, there is nonetheless something
to be learned from the manner in which users struggled. The
array data structures provided by TinyScript appear to have
been designed to simplify their use: the arrays are of a fixed
size (10) and provide a shorthand for push and pop oper-
ations, giving the structure the feeling of an array-stack hy-
brid. Many participants struggled with this functionality, cre-
ating solutions that would often cause the array to overflow.
In Section 6.2 we discuss how we use these findings to influ-
ence our implementation of arrays in BASIC.

The confusion regarding the distinction between se-
rial and wireless communication was also visible in the
TinyScript group. Analogous to the PRINT and SEND state-
ments are uart() and send() functions. Similar numbers of
participants confused their use as in the BASIC study, though
no participants were able to provide a solution that was oth-
erwise correct.

All
Users

Novice Inter.

All
Users

Novice Inter.

 BASIC TinyScript
Experience Level

1

2

3

4

5

6

7

R
a
ti

n
g

All
Users

Novice Inter.

All
Users

Novice Inter.

 BASIC TinyScript
Experience Level

1

2

3

4

5

6

7

R
a
ti

n
g

(a) “I felt that the tutorial was easy to understand.” (b) “I feel that I understand [the language].”

All
Users

Novice Inter.

All
Users

Novice Inter.

 BASIC TinyScript
Experience Level

1

2

3

4

5

6

7

R
a
ti

n
g

All
Users

Novice Inter.

All
Users

Novice Inter.

 BASIC TinyScript
Experience Level

1

2

3

4

5

6

7

R
a
ti

n
g

(c) “I followed the tutorial and tried many of the examples.” (d) “I feel that the tutorial should be longer.”

Figure 4. User responses to prompts given after completion of tutorial. A rating of 1 corresponds to “strongly disagree”
and 7 corresponds to “strongly agree”.

Finally, we find that both groups were able to provide ef-
ficient implementations at similar rates. Efficient implemen-
tations are those that use each language’s (either implicit or
explicit) abstractions for power management.

Novice programmers: We now draw our attention to the
ability of novice participants to complete the set of exercises.
We report these results for BASIC and TinyScript in Fig-
ures 6(c) and (d) respectively. Here, the contrast between the
two languages becomes much more pronounced. For the first
exercise, 54% of participants using BASIC were able to com-
plete the first exercise, whereas none of the participants using
TinyScript could do so. Likewise, 45% of the BASIC partic-
ipants completed exercise 2, while none of the TinyScript
participants succeeded. Finally, 17% of the participants us-
ing TinyScript had success with exercise 3, compared to 46%
of the BASIC group. Overall, on the order of half of the
novices—people who have never programmed before in any
language—were able to produce good solutions in BASIC, a
considerably larger fraction than with TinyScript.

We attribute the different rates of success between the two
groups to the relative complexity of the TinyScript language.
Each additional language feature (e.g., data types, event-
driven control flow, etc.) imposes a real cost on the novice
developer, complicating their mental model of the program’s
execution. Given the typical programming background of
our intermediate participants, it is likely that they have pre-
viously encountered topics such as types and variable scope.

Outside of the coarse categorization of “correct” versus
“incorrect” solutions, we observed another interested phe-
nomenon: few solutions submitted by the participants in ei-
ther experience group used TinyScript’s event model. In
TinyScript, the programmer has access to two timer-based
event handlers. The period of the timers would be specified
in the “once” event handler that is analogous to the “main”
function in a C program. Instead of placing code in one of
the timer-based handlers, participants would write all of their
code in the “once” handler, placing the desired functionality
into a non-terminating for loop. Only 3 out of the 15 total
correct solutions across all of the TinyScript exercises used
the event-driven model. Informal interviews held after the
completion of the exercises suggested that participants did
not understand what would happen to the application state
after either the “once” or timer-based handlers terminated. It
is not likely that this was an artifact of the presentation of
the language. Our TinyScript manual gives equal weight to
both approaches, and even provides an example of a periodic
TinyScript program.

Overall, our studies show that our extended BASIC al-
lows for novices who have never programmed before to com-
plete simple sensor network applications after a short tuto-
rial. We have also found that both novice and intermediate
programmers struggle with the event-driven model provided
by TinyScript.

1

2

3

4

5

6

7

Q
u

e
st

io
n

 "
U

n
d

e
rs

to
o
d

 E
xe

rc
is

e
"

Exercise 1 Exercise 2 Exercise 3

1

2

3

4

5

6

7

Q
u

e
st

io
n

 "
A

b
le

 t
o
 C

o
m

p
le

te
"

All
Users

Novice Inter.

All
Users

Novice Inter.

 BASIC TinyScript

1

2

3

4

5

6

7

Q
u

e
st

io
n

 "
F

e
lt

 F
ru

st
ra

te
d

"

All
Users

Novice Inter.

All
Users

Novice Inter.

 BASIC TinyScript

All
Users

Novice Inter.

All
Users

Novice Inter.

 BASIC TinyScript

Figure 5. User responses to a set of prompts given after each exercise. Columns correspond to different exercises while
rows indicate the question being answered.

10 sense 0 a

20 if a < 800 then led 1 1

30 sleep 2000

40 if a > 800 then led 1 0

50 sleep 2000

60 goto 10

Figure 7. One participant’s solution to exercise 3. The
extra SLEEP statement indicates a misunderstanding of
proper duty cycling.

10 sleep period 1 sec

20 sense light into a

30 if a < 800 then send "light off"

40 resume

Figure 8. An example solution to exercise 2 using the pe-
riodic sleep language extension made in response to feed-
back from the user study as well as several refinements to
the BASIC grammar.

6.2 Language Modifications
In examining the code produced by our study participants,

we found participants in both the BASIC and TinyScript
groups that either neglected to duty-cycle their applications
or did so in such a way that introduced unnecessary delay to
event detection. An example of this can be seen in Figure 7.

In response to this issue, we designed and implemented
a simple extension to our BASIC interpreter to facilitate the
kind of duty-cycled applications common in WSNs. The lan-
guage extension adds the PERIOD keyword which can be
used as a modifier to the SLEEP statement along with RE-
SUME, a new statement that takes no arguments. An exam-
ple of how this statement can be applied to exercise 2 can
be found in Figure 8. Should the execution time of the code
between the SLEEP and RESUME statement extend beyond
the given period, the interpreter issues a warning.

We also added array data structures to the uBASIC lan-
guage. Arrays variables are declared using the DIM keyword
followed by an array size enclosed in angle brackets. Our de-
cision to explicitly require that the programmer specify array
size at allocation time and limit array accesses to by-index
comes from watching users struggle with array indexing us-
ing TinyScript. To support applications requiring the manip-
ulation and reporting of large data sets, arrays can contain as
many as 65536 elements. The interpreter will transparently
page the arrays to flash as needed.

To support high-resolution sampling, we extended the
syntax of the SENSE statement to support several additional
keywords. These allow the user to specify a desired sam-
pling rate along with the number of samples to collect at that
rate. The interpreter then ensures that the samples are col-
lected at the correct sampling rate, issuing a warning if the

Subject Correct LoC Efficient Correct Correct (PRINT) LoC Efficient Correct LoC Efficient Correct Efficient

1 Yes 5 Yes Yes * 5 Yes No * * 2 2

2 Yes 5 Yes Yes * 3 No Yes 4 No 3 1

3 Yes 6 Yes No Yes 5 Yes Yes 6 Yes 2 3

4 Yes 5 Yes No Yes 4 Yes Yes 5 Yes 2 3

5 Yes 5 Yes No No * * No * * 1 1

6 Yes 5 Yes No Yes 5 Yes No * * 1 2

7 Yes 5 Yes No Yes 5 Yes Yes 4 No 2 2

8 Yes 5 Yes Yes * 5 Yes Yes 5 Yes 3 3

9 Yes 5 Yes Yes * 10 Yes Yes 5 Yes 3 3

100.0% 44.4% 66.7%

100.0% Percentage Correct (PRINT) 88.9% 66.7%

5.11 (0.33) 87.5% 4.83 (0.75)

TotalExercise 2Exercise 1 Exercise 3

Percentage Correct

Percentage Efficient

5.25 (2.05)

Percentage Correct

Percentage Efficient

Avg. LoC (Std. Dev.)Avg. LoC (Std. Dev.)

Percentage Correct

Percentage Efficient

Avg. LoC (Std. Dev.)

(a) Exercise results for intermediate programmers using BASIC.

Subject Correct LoC Efficient Correct Correct (Uart) LoC Efficient Correct LoC Efficient Correct Efficient

1 Yes 8 Yes No No * * Yes 10 No 2 1

2 Yes 9 Yes No No * * Yes 12 No 2 1

3 Yes 8 Yes No No * * Yes 16 Yes 2 2

4 Yes 9 Yes No No * * No * * 1 1

5 Yes 8 Yes No No * * Yes 9 No 2 1

6 Yes 8 Yes No No * * No * * 1 1

7 Yes 6 Yes No No * * No * * 1 1

8 No * * No No * * Yes 10 Yes 1 1

100.0% 0.0% 71.4%

100.0% 0.0% 50.0%

8.00 (1.00) 0.0% 11.40 (2.79)

Exercise 1 Exercise 2 Exercise 3 Total

Percentage Correct Percentage Correct Percentage Correct

Percentage Efficient Total Correct (PRINT) Percentage Efficient

Avg. LoC (Std. Dev.) Percentage Efficient Avg. LoC (Std. Dev.)

Avg. LoC (Std. Dev.) *

(b) Exercise results for intermediate programmers using TinyScript.

Subject Correct LoC Efficient Correct Correct (PRINT) LoC Efficient Correct LoC Efficient Correct Efficient

1 Yes 5 Yes No Yes 4 Yes Yes 5 Yes 2 3

2 No * * No Yes 4 Yes No * * 0 1

3 Yes 5 Yes No No * * No * * 1 1

4 Yes 9 Yes Yes * 5 Yes Yes 6 Yes 3 3

5 No * * No * * * Yes 12 Yes 1 1

6 No * * No * * * No * * 0 0

7 Yes 5 Yes No * * * No * * 1 1

8 No * * No * * * No * * 0 0

9 Yes 5 Yes Yes * 4 Yes Yes 3 No 3 2

10 No * * No * * * No * * 0 0

11 Yes 5 Yes Yes * 3 No Yes 6 No 3 1

54.5% 27.3% 45.5%

100.0% Percentage Correct (PRINT) 45.5% 60.0%

5.66 (1.63) 80.0% 6.40 (3.36)

TotalExercise 1 Exercise 2 Exercise 3

Percentage Efficient Percentage Efficient

Percentage Correct Percentage Correct Percentage Correct

Avg. LoC (Std. Dev.) Percentage Efficient Avg. LoC (Std. Dev.)

Avg. LoC (Std. Dev.) 4.00 (0.71)

(c) Exercise results for novice programmers using BASIC.

Subject Correct LoC Efficient Correct Correct (Uart) LoC Efficient Correct LoC Efficient Correct Efficient

1 No * * No No * * No * * 0 0

2 No * * No No * * No * * 0 0

3 No * * No No * * Yes 15 No 1 0

4 No * * No No * * No * * 0 0

5 No * * No No * * No * * 0 0

6 No * * No No * * No * * 0 0

7 No * * No No * * No * * 0 0

8 No * * No No * * No * * 0 0

9 No * * No No * * Yes 8 Yes 1 1

10 No * * No No * * No * * 0 0

11 No * * No No * * No * * 0 0

12 No * * No No * * No * * 0 0

0.0% 0.0% 16.7%

0.0% Percentage Correct (PRINT) 0.0% 50.0%

* 0.0% 11.50 (4.95)

Exercise 1 Exercise 2 Exercise 3 Total

Percentage Correct Percentage Correct Percentage Correct

Percentage Efficient Percentage Efficient

Avg. LoC (Std. Dev.) Percentage Efficient Avg. LoC (Std. Dev.)

Avg. LoC (Std. Dev.) *

(d) Exercise results for novice programmers using TinyScript.
Figure 6. Exercise results for BASIC and TinyScript.

programmer-specified rate cannot be met.
To allow for event-driven computation, we extended the

SLEEP statement to allow for mote wake-up based on
an external interrupt, using hardware we previously devel-
oped [17]. The SLEEP statement can be modified using an
optional keyword and the channel used to signal the inter-
rupt. While waiting on an interrupt, the mote can remain in
a low-power state, substantially reducing the power required
to accurately detect transient events.

The study also prompted several smaller changes. In
our original implementation, arguments to SENSE and LED
functions specifying which sensor or LED to access were
given as integer expressions to maximize flexibility. These
arguments appeared to confuse several users of our language
during our evaluation so these arguments were changed to
keywords indicating the color of the LED actuated or the
name of the sensor. Likewise, the SLEEP statement was
modified to support durations in time units other than ms.

To support a more diverse set of applications, we added
built-in function support to the BASIC interpreter, allowing
for collections of domain-specific functions to be added to
the interpreter at compile time. The functions are written
in C, eliminating a potential energy and performance bot-
tleneck for complex operations. This extensibility permits a
decomposition of the problem where WSN or application de-
velopment experts can write custom functions that can then
be used by the domain experts in BASIC. Furthermore, it
provides a path where commonly used functionality at the
BASIC level can be hoisted into a function, including hard-
ware, if it turns out to have performance or power problems.

Along with these changes, we are considering unifying
the PRINT and SEND statements into a single communica-
tion abstraction, with the interpreter handling the choice of
medium. Given our experience, such an abstraction would
prove less confusing for inexperienced programmers. We
plan on exploring this idea as we focus on salient commu-
nication abstractions novice WSN developers in future ver-
sions of our BASIC variant.

6.3 Experience with an Application
To further understand the utility of BASIC to domain ex-

perts, we conducted a second study in which domain experts
implemented a structural monitoring application motivated
by their research. We first solicited a sensor network appli-
cation specification from a collaborator in structural monitor-
ing. We then recruited students from our collaborator’s lab
who had not been previously involved in sensor network re-
search to implement the task in BASIC. Although the study
here is small scale and should therefore be taken anecdo-
tally, the results do support the conclusions of the larger scale
study of BASIC and show that domain experts can indeed
use BASIC to quickly implement specifications given by a
domain expert.

Our collaborator’s description included two application
tasks that are free of implementation-specific details. In
the first task, the application periodically monitors an exter-
nal string-displacement sensor connected to the sensor hard-
ware’s ADC. The application must collect 1,000 samples
from the sensor at a rate of 1 kHz every 15 minutes to 2
hours. After each sampling period, the application must send

the average of the collected samples along with a timestamp
to the base station. Time synchronization between sensors
is not required. The second task specified that the sensor
be sampled at 500 Hz to 2.5 kHz for 3 to 10 seconds. Un-
like the first, sampling occurs only when the output of an
external sensor passes a given threshold. The sensor hard-
ware detects when the external sensor passes this threshold
via custom external event detection hardware previously de-
veloped by our group that generates an interrupt when the
threshold is passed. The task requires that the application
send all samples back to the base station.

We surveyed our collaborator’s students’ programming
backgrounds and found that they had minimal programming
background, at the level of “intermediate” in the results pre-
viously described in Section 6.1. One researcher reported
experience with Matlab, which was learned in a classroom
setting and used for course work and research. The other re-
searcher reported experience with C/C++, Matlab, and Pas-
cal also using the languages for course and project work. The
two researchers reported maximum program sizes of 100 and
200 lines of code, respectively.

We conducted an experiment similar to our large-scale
study. Each researcher was given 30 minutes to work through
the BASIC tutorial, learn the language, and become famil-
iar with the programming environment. We then presented
the researcher with both of the programming tasks. The re-
searcher was given 30 minutes to complete each task. When
the researcher completed his task, we checked the program
for correctness. If the program did not correctly implement
the specification we explained that it did not (but not why),
and asked the researcher to iterate in the remaining time.

For the first task, both researchers were able to succeed
after one iteration. The initial errors included incorrect pe-
riodic behavior leading to only a single sample being taken,
and an “off-by-one” array indexing error. The second itera-
tion in both cases was correct and power-efficient. Both re-
searchers were able to produce correct and efficient solutions
to the second task in one iteration.

6.4 Power Consumption
To understand the overhead of using interpreted BASIC

for sensor network applications we measured the energy re-
quired to execute typical sensor network tasks and provide
an estimate of the typical overhead we would expect for pro-
grams written in BASIC. For interpreted BASIC, we find
that while computationally intensive code sees a consider-
able drop in efficiency compared to C, a typical sensor net-
work task involving data acquisition and communication suf-
fers only a 1.5% increase in power consumption. Further-
more, compiled BASIC shows performance comparable to
code written directly in C.

Experimental setup: In all our experiments, we com-
pare an application written in BASIC to one written in C
using Mantis OS for reading sensor values and performing
communication. We compare the same BASIC code across
our baseline interpreter as well as a modified interpreter that
maintains a tokenized representation of the BASIC program.
To evaluate compiled BASIC, as a proof-of-concept, we use
an existing BASIC to C translator [29] to generate baseline
C code to which we then add the appropriate calls to Man-

1 200 400 600 800 1000 1200 1400 1600 1800

Execution Rate (operations/sec)

0

5

10

15

20

P
o
w

e
r

(m
W

)
BASIC

Tokenized BASIC

Compiled BASIC

Mantis C

Figure 9. Power consumption versus execution rate.

tis. While we feel that the rapid development environment
provided by an interpreted language aids novice program-
mers, we imagine that an application developer could deploy
a compiled version of his or her code after it has been devel-
oped, debugged, and tested. In each power comparison, the
code is functionally identical, with both the interpreter and
both sets of C code relying on the same Mantis OS system
calls.

To measure the worst-case overhead of the BASIC in-
terpreter, we created a simple benchmark application that
executes a loop summing all integer values within a range,
sleeps for a fixed amount of time, and repeats. We use this
application to estimate the power requirements of several dif-
ferent rates of execution between the two implementations.
For the purposes of our comparison, we equate one iteration
of the loop with one operation.

We also evaluate a typical sensor network use case by
comparing the power requirements of a “sense and send” ap-
plication. The goal of this application is to sense a value from
the environment at the rate of 1 Hz and conditionally send a
message to a base station if that value passes a given thresh-
old. For this experiment, we set the threshold low enough
such that the value is always transmitted.

We perform our measurements using a Crossbow MicaZ
mote with an MTS300 sensor board. Power measurements
are taken using a National Instruments 6036E data acquisi-
tion card connected to a PC running Windows XP. We mea-
sure the voltage across a 10 Ω resistor in series with the
power supply to calculate the current.

Results: Figure 9 illustrates the computational and power
overhead as we sweep the desired execution rate of our
benchmark. For an iteration rate of one operation (iteration),
the interpreter and native code solution have a difference of
0.1 mW. The non-optimized, non-tokenizing BASIC inter-
preter reaches a saturation point at approximately 200 opera-
tions per second at which point the interpreter cannot execute
any faster. The tokenizing implementation experiences its
saturation point at approximately 1,800 operations per sec-
ond. At this execution rate, the interpreter uses about 18×
more power than the native code solution. Note that the com-
piled version of BASIC allows for an execution rate roughly
identical to that of C.

For the “sense and send” application, we measure an in-

crease in power consumption of 1.5% for BASIC compared
to native C, with the average power consumption of the BA-
SIC application at 2.08 mW compared to the native C ap-
plication at 2.05 mW. The tokenized version experiences a
similar overhead of approximately 1.5%, while the compiled
BASIC version has negligible overhead.

Our results indicate that a purely interpreted language like
BASIC is acceptable for sensor network applications that
are not compute-intensive, as is common. Tokenization in-
creases the range of applications for which it is appropriate.
Finally, compiled BASIC has computation performance and
power characteristics that are virtually identical to C.

7 Conclusions
We have addressed the problem of making sensor net-

works easier to program by non-experts by exploring the
use of an extended BASIC programming language in this
domain. Our contributions include a user study evaluating
how well novice (no programming experience) and interme-
diate (some programming experience) users can accomplish
simple sensor network tasks in our version of BASIC and
in TinyScript (an alternative also designed for inexperienced
programmers). We also evaluate the power-consumption is-
sues in interpreted languages like BASIC. Half of users with
no previous programming experience of any kind were able
to program simple network tasks using our BASIC. Our ex-
perimental results show that use of a BASIC interpreter has
little impact on the power consumption of applications in
which computational demands are low, while compiled BA-
SIC behaves nearly identically to compiled C. We strongly
encourage further evaluation of prospective languages for
sensor networks via carefully designed user studies.

8 References
[1] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose,

A. Sheth, B. Shucker, and R. Han. MANTIS: System
support for MultimodAl NeTworks of In-situ Sensors.
In Proc. Int. Wkshp. Wireless Sensor Networks and Ap-
plications, pages 50–59, Sept. 2003.

[2] L. Bai, R. Dick, and P. Dinda. Archetype-based design:
Sensor network programming for application experts,
not just programming experts. In Proc. Int. Symp. In-
formation Processing in Sensor Networks, April 2009.

[3] A. Bonivento, L. P. Carloni, and A. Sangiovanni-
Vincentelli. Platform based design for wireless sen-
sor networks. Mobile Networks and Applications, May
2006.

[4] A. Cerpa and D. Estrin. ASCENT: Adaptive Self-
Configuring sEnsor Networks Topologies. IEEE Trans.
Mobile Computing, 3(3), July 2004.

[5] E. Cheong, E. A. Lee, and Y. Zhao. Viptos: A graphical
development and simulation environment for TinyOS-
based wireless sensor networks. Technical report,
EECS Department, University of California, Berkeley,
Feb. 2006.

[6] Dartmouth College Computation Center. A Manual for
BASIC, the elementary algebraic language designed
for use with the Dartmouth Time Sharing System, 1964.

[7] D. M. Davis. The perpetual novice: An undervalued
resource in the age of experts. Mind, Culture, and Ac-
tivity, 4(1):42–52, January 1997.

[8] A. Decker. How Students Measure Up: An Assessment
Instrument for Introductory Computer Science. PhD
thesis, Department of Computer Science and Engineer-
ing, SUNY, 2007.

[9] C. H. Dowding, H. Ozer, and M. Kotowsky. Wire-
less crack measurment for control of construction vi-
brations. In Proceedings of the Atlanta GeoCongress,
Engineering in the Information Technology Age. Geo-
Institute of the American Society of Civil Engineers,
2006.

[10] A. Dunkels. uBASIC.
http://www.sics.se/∼adam/ubasic/.

[11] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors, Novem-
ber 2004.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic ap-
proach to networked embedded systems. In Proc.
Programming Language Design and Implementation
Conf., June 2003.

[13] R. Gummadi, O. Gnawali, and R. Govindan. Macro-
programming wireless sensor networks using Kairos.
In Proc. Int. Conf. Distributed Computing in Sensor
Systems, July 2005.

[14] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
and K. S. J. Pister. System architecture directions for
networked sensors. In Architectural Support for Pro-
gramming Languages and Operating Systems, pages
93–104, 2000.

[15] T. W. Hnat, T. I. Sookoor, P. Hooimeijer, W. Weimer,
and K. Whitehouse. MacroLab: a vector-based macro-
programming framework for cyber-physical systems.
In Proc. Int. Conf. Embedded Networked Sensor Sys-
tems, pages 225–238, 2008.

[16] J. Horey, E. Nelson, and A. B. Maccabe. Tables: A
table-based language environment for sensor networks.
Technical Report TR-CS-2007-19, The University of
New Mexico, 2007.

[17] S. Jevtic, M. Kotowsky, R. P. Dick, P. A. Dinda,
and C. Dowding. Lucid dreaming: Reliable analog
event detection for energy-constrained applications. In
Proceedings of the International Conference on Infor-
mation Processing in Sensor Networks (IPSN), April
2007.

[18] S. Kan. Metrics and Models in Software Quality Engi-
neering. Addison Wesley, 2002.

[19] J. Kemeny and T. Kurtz. Back to BASIC: The His-
tory, Corruption, and Future of the Language. Addison
Wesley, 1985.

[20] M. Kuorilehto, M. Kohvakka, M. Hännikäinen, and
T. D. Hämäläinen. High abstraction level design and
implementation framework for wireless sensor net-
works. In Embedded Computer Systems: Architectures,
Modeling, and Simulation, pages 384–393. Springer,
July 2005.

[21] P. Levis. The TinyScript language.
http://www.eecs.berkeley.edu/∼pal/mate-web
/files/tinyscript-manual.pdf, 2004.

[22] P. Levis and D. Culler. Mate: A tiny virtual machine for
sensor networks. In Proc. Int. Conf. Architectural Sup-
port for Programming Languages and Operating Sys-
tems, Oct. 2002.

[23] P. Levis, D. Gay, and D. Culler. Bridging the gap: Pro-
gramming sensor networks with application specific
virtual machines. Technical Report CSD-04-1343, UC
Berkeley, August 2004.

[24] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. TinyOS: An operating system
for sensor networks. In Ambient Intelligence. Springer,
2005.

[25] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122–173, 2005.

[26] Microsoft. .NET Micro Framework.
http://www.microsoft.com/netmf/default.mspx.

[27] R. Newton, G. Morrisett, and M. Welsh. The regiment
macroprogramming system. In Proc. Int. Symp. Infor-
mation Processing in Sensor Networks, pages 489–498,
New York, NY, USA, 2007. ACM.

[28] R. Newton and M. Welsh. Region streams: Functional
macroprogramming for sensor networks. In Proc. Int.
Wkshp. Data Management for Sensor Networks, Aug.
2004.

[29] M. Ohura. b2c: Basic to c translator.
http://www.netfort.gr.jp/ ohura/b2c/README.html.

[30] J. M. Palormo. Computer Programmer Aptitude Bat-
tery: Examiner’s Manual. Science Research Asso-
ciates, Chicago, Illinois, 2nd edition, 1974.

[31] T. Pittman. TINY BASIC user manual. Software Man-
ual from Itty Bitty Computers, 1976. Available from
http://www.ittybittycomputers.com/IttyBitty/TinyBasic/.

[32] J. Polastre, R. Szewczyk, and D. Culler. Telos: en-
abling ultra-low power wireless research. In Proc.
Int. Symp. Information Processing in Sensor Networks,
Apr. 2005.

[33] M. W. V. Someren. What’s wrong? understanding be-
ginners’ problems with prolog. Instructional Science,
19(4/5):257–282, 1990.

[34] Sun Microsystems. SunSPOTWorld – home of project
sun spot. http://www.sunspotworld.com/.

