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Motivation

Designing a wireless sensor network is challenging.

Faults are common in wireless sensor networks.

Manual and ad hoc fault detection or error correction is challenging or
expensive.

Existing fault detection and error correction techniques require
substantial efforts for novice programmers to learn and use.

High-level sensor network programming languages and fault tolerance
mechanisms generally designed in isolation.
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Goals

Allow novice programmers to design sensor networks that operate in
harsh environments, without explicitly handling faults.

Make it easy to understand the impact of faults on system-level
information.

Combine high-level programming languages and automatic fault-aware
code transformation.

Leverage existing fault detection and correction techniques.
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Insights and ideas

Novice programmers tend to assume a fault-free system.

Users should know impact of faults on results.

Users do not need to know low-level fault details.

Use domain knowledge (expected behaviors) from application experts
for effective fault detection and correction.
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Related work I

High-level programming languages for WSN

Hide low-level implementation details (e.g., node
communication) from programmers.

TinyDB, Regiment, WASP, etc.

Few provides support for fault detection and error correction.

No programmer access to handle faults.

Support for failure recovery considered in language design

Declarative failure recovery for sensor networks (Gummadi
AOSD’07).

Declarative annotations to specify checkpointing recovery
strategies.
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Related work II

Fault tolerance in WSN

Classify and model faults in sensor networks.

Minimize impact of faults on system performance and availability.

Minimize performance and energy overhead of network diagnosis.

Koushanfar IEEE Sensors’06, Clouqueur TC’04, Ramanathan
Sensys’05, Ni TOSN’09.
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Contributions

Code transformation: automatically generate code supporting
reliability management, leaving little work for the programmers.

Error estimation: indicate to domain experts consequences of faults,
they can appreciate and understand.
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Background on WASP language

A compact, high-level programming language for a class of WSN
applications (IPSN’09)

Periodic sampling with data processing and aggregation in a
homogeneous stationary network.

User study shows WASP is accessible to novice programmers.

Node-level code segment specifies sampling and local data processing

Operations apply to time series data that are local to a single node.

Network-level code segment specifies data filtering, aggregation,
transmission through network

Operations apply to most recent data from all the nodes in the
network.
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Example WASP code

Application: get average temperature from a sensor network that
samples every 2 seconds.

local:
sample temperature every 2 sec into mytemp

network:
collect AVG(mytemp)
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Example WASP code

What if a sensor node fails and produces erroneous readings?

Original system: faulty data are mixed with correct data during
aggregation.

Modify WASP program to ignore faulty readings

local:
sample temperature every 2 sec into mytemp

network:
collect AVG(mytemp) where mytemp >= 0 and mytemp <= 80

Users will not notice anything even if only 1 sensor is functioning
among 100 sensors.
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Example of extended WASP code

Extend WASP language to specify expected behaviors

local:
sample temperature every 2 sec into mytemp

network:
collect AVG(mytemp)

expected:
temperature range [0, 80]
temperature temporal gradient < 5 degrees per minute
temperature spatial gradient < 3 degrees per meter

Extend results to indicate accuracy

Users receive AVG(mytemp) as an interval indicating associated
error.
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FACTS design I
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FACTS design II

How FACTS works

Sensor faults detected online by range checks.

Faulty sensor readings corrected online using bounds on sensor
reading, and temporal and spatial gradients.

Corrected faulty sensor readings represented with intervals.

Sensor data intervals propagate to the final results with interval
arithmetic.

User receives requested data represented in intervals.
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Fault detection

Sensor faults often result in out-of-range readings.

Check whether sensor readings are in expected ranges.

Check whether sensor works under expected conditions.

Ranges specified by application experts.
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Error estimation

Use bounds on temporal gradient and spatial gradient to estimate
ranges of erroneous sensor readings.

Bounds on temporal and spatial gradients specified by application
experts.
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Alternative approaches for error estimation with spatial
data

(a): error computed at parent node using parent node’s readings.

(b): error computed at faulty node using its children’s readings.

(c): error computed at faulty node using its neighbors’ readings.
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Key considerations

Network communication overhead.

Tightness of bounds on faulty data.

Implementation complexity.
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Error propagation via expression tree

Compute error in final results with interval arithmetic.

Most functions are monotonic (e.g., average, max).

Original: z = x + y

FACTS: z .min = x .min + y .min
z .max = x .max + y .max
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Error propagation via control flow

Faulty variable appears in conditional expressions.

Example

collect AVG(y) where x > 100

Node 1 2 3 4 5

x [120] [90,110] [80,120] [83,102] [130]
y 2 4 6 3 8

What is the range of AVG(y)?

Could consider all combinations (2n).
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Error propagation via control flow

Compute MIN(AVG(y))

Sort undecided variables by y.

Compute average of decided y’s.

Incrementally include remaining y’s.

This guarantees MIN(AVG(y)) will be encountered.

Stop at local minimum.

Runtime is O (n log n).

Converse is true for MAX(AVG(y)).

y’s 2 8 3 4 6
AVG(y) 5 4.33 4.25 4.6
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Prototype evaluation
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Tested in a small-scale sensor network composed of four TelosB nodes.

Injected intermittent sensor faults by shorting the terminals of the
thermal sensor.
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Evaluation of code size and memory use

App. 1: periodically gathers temperature and light data.

App. 2: periodically samples light and averages data among nodes at
similar heights.

App. 3: periodically samples temperature and sends data only when
the increase in temperature exceeds a threshold.

Code size (Byte) Memory usage (Byte)
App. 1 App. 2 App. 3 App. 1 App. 2 App. 3

Fault-unaware 32,556 33,060 27,722 2,130 2,134 2,038
Fault-aware 37,358 37,740 32,088 2,212 2,224 2,096

Overhead (%) 14.7 14.2 15.7 3.8 4.2 2.7
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Evaluation of programming overhead

WASP LoC NesC LoC
App. 1 App. 2 App. 3 App. 1 App. 2 App. 3

Fault-unaware 6 7 7 489 495 484
Fault-aware 12 10 10 621 585 545
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Evaluation with simulation

Weather data from LUCE deployment at EPFL.

Generate fault-free data traces

Identify a time interval and a set of nodes with low data drop
rate. One hour data traces (9,028 data samples) from 74 nodes.

Parse data to produce synchronized periodic time series.

Determine lower and upper bounds based on histogram. 99.4%
data in 5–30 ℃ range.

Compute bounds on temporal and spatial correlation. 3 ℃ per
30 s and 5 ℃ per 50 m.

Replace faulty and missing data (3.7%) with values generated
based on spatial and temporal correlation.
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Evaluation with simulation

Fault injection during evaluation

Model sensor transient faults using Poisson processes.

Independent but equal-rate (0.1 to 0.5 per minute) fault
processes for sensor nodes.

Sensor faults last one sampling period (29.3 s), same as original
data set.

Generate faulty sensor readings by sampling from set of outliers
extracted from original data set.
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Corrected and uncorrected time series
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Error magnitude distribution
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Conclusions

Extended a high-level sensor network programming language, its
compiler, and runtime system to incorporate reliability management
techniques.

Implemented code transformation to generate fault detection and
error estimation code.

FACTS uses easily specified domain-specific expert knowledge to
support on-line detection of sensor data faults.

FACTS computes accuracy intervals of data analysis expressions to
make the system-level impact of faults clear to users.

Fault-aware program has small code and memory overhead.
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Q&A

Thank you
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