
TinySQL Manual

1 Introduction

TinySQL is a programming language for a subset of wireless sensor network applications that use sta-
tionary nodes to periodically sample data and transmit them to a base station. Data can be filtered
and aggregated within the network. Programmers use TinySQL to specify the data they want to extract
from the sensor network.

When you start the test, three windows will be open for you on the desktop, as shown in Figure 1.
Please keep them open during the test. If you close any of these windows by accident, please ask your
instructor to reopen them. In Figure 1, the window at the top layer is the TinySQL programming
environment, where your program is edited and run. The Network window shows program errors and
sampled data for each node. The Base station window shows the data received at the base station. A
network composed of four nodes is simulated in this test.

2 Concepts and Definitions

Here are some concepts and definitions we will use in this manual.

• Expressions are composed of operands, binary operators, and parenthesis. Operands include
numbers and node attributes. The simplest form of expressions contains only one operand, such
as 10 and light. A binary operator can be + (add), - (subtract), * (multiply), or / (divide). For
example, (light ∗ 2 + 100)/10 is a more complex expression.

• Comparison operations are composed of expressions collected with comparison operators. The
comparison operators include > (greater than), < (less than), = (equal), >= (greater than or
equal), <= (less than or equal), and <> (not equal). The result of an comparison operation can
either be true or false. Binary operators and parenthesis can be used to compose expressions into
more complex expressions. For example, light > 10 is true when light equals 20.

• Aggregation functions take one argument and return one result. They apply the aggregation
operation to a group of data elements. You can use an aggregation function in the following way:
function name(argument).

1

Figure 1: TinySQL Programming and simulation environment.

3 TinySQL Programming Language Construct

TinySQL lets programmers view the entire sensor network as a logical table indexed by nid (node
ID). This table is named sensors. It has one row for each sensor node, and one column for each node
attribute. Node attributes can either be constants that do not change during run time, such as nid, or
sensor readings, such as light. Supported attributes are: nid, light, temp (temperature), and humidity.
The sensors table is a snapshot of the sensor network in time; data in the table are updated periodically
according to a specified period. Table 2 shows an example of this logical table at a certain time stamp.
In the next period, the content will be overwritten with new values. If you want to access historical
data, storage point should be used (it will be explained in detail later). TinySQL is the language used
to extract data from the sensors table.

A template for TinySQL programs is given below. Upper-case words are commands; you don’t need
to capitalize them when you write your program. Lower-case words are descriptions of parameters; you
need to replace them with the variables, functions, and expressions you want to use. We use “[]” to
denote optional clauses. The operator “|” indicates that one or the other of the surrounding tokens may
appear, but not both. Ellipses (“...”) indicate a repeating set of tokens, such as fields in the SELECT
clause or tables in the FROM clause.

2

Table 1: A snapshot of the sensor network
nid light humidity
0 150 580
1 125 660
2 526 102
3 440 483

SELECT expr | agg(expr) [AS name], ...

FROM sensors | storage-point, ...

[WHERE selection-conditions]

[GROUP BY expr, ...]

[HAVING group-selection-conditions]

PERIOD t time-unit

[CREATE STORAGE POINT storage-point-name SIZE n AS

SELECT ...

]

Explanations of the TinySQL template follow.

• SELECT expr | agg(expr) AS name, ...: Specifies what data will be extracted from the
selected tables. The items to be selected can either be specified using an expression, such as light
+ 10, or using an aggregated attribute, such as AVG(light). If multiple tables are specified in the
From clause, you should append the table name in front of the column name to indicate which
table the column refers to. E.g., sensors.light represents the light column of the sensors table. The
selected fields can be renamed with an “AS name” clause. Aggregation operations apply to a set
of nodes that are grouped together by a GROUP BY operation. The SELECT clause, if not
nested in the CREATE STORAGE POINT clause (will be explained later), determines what
types of data are collected at the base station.

• From sensors | storage-point AS name, ...: Specifies from which tables the data are extracted
from. Sensors is the table representing the snapshots of the network. Storage-point is the name
of the storage point you create.

TinySQL provides the following aggregation functions:

– MAX(expr): Compute the maximum value of expression in each group.

– MIN(expr): Compute the minimum value of expression in each group.

– AVG(expr): Compute the average value of expression in each group.

– SUM(expr): Compute the sum value of expression in each group.

– COUNT(*): Compute the number of rows in each group.

• WHERE selection-conditions: Select rows that satisfy the specified conditions. The selection
conditions may contain multiple comparison operations, which are connected with AND, OR,
and parenthesis. E.g., WHERE nid > 1 AND light < 50.

3

• GROUP BY expr, ...: Group nodes so that nodes in each group have the same values for
the listed expressions. E.g., GROUP BY light groups nodes with the same light sensor readings
together. If no GROUP BY clauses is specified but an aggregation operation is used, then all
the selected rows will be counted as one group, thereby allowing the use of aggregation functions.

• HAVING group-selection-conditions: Select groups that satisfy the specified conditions. E.g.,
HAVING AVR(temp) > 100 selects groups with average temperatures higher than 100. Again,
multiple conditions are combined with AND and OR.

• PERIOD t time-unit: Specify the sampling period of the selected data. T is an integer number.
Time-unit is ms, s, min, or hour.

• CREATE STORAGE POINT storage-point-name SIZE n AS: This clause creates a loca-
tion to store data from multiple time steps. Data from the most recent n time steps are stored.
This clause is optional.

4 Examples Using TinySQL Language

Example 1: Write a program to gather the maximum light levels from the nodes with humidity sensor
readings above 500. Light and humidity are sampled every two seconds.

SELECT max(light)

FROM sensors

WHERE humidity > 500

PERIOD 2 s

Let Table 2 represent a snapshot of the network. Execution of the code will yield the following
results. First, the rows with humidity column values larger than 500 are selected, which correspond to
node 0 and node 1. Then the aggregation operation “max” is applied to the light column of the selected
rows. Since no group by clause is specified, all the selected rows are grouped together. Therefore, node 0
and 1 forms one group and the maximum light of this group is 150. As a result, 150 will be returned to
the base station for this specific period. This computation are repeated every 2 seconds and new results
are returned to the base station at the same frequency.

Table 2: Table sensors

nid light
0 150
1 200

Table 3: Table for storage point rlight

nid light
0 150
1 200
0 500
1 400
0 140
1 120
0 500
1 40

Example 2: Write a program to sample light every two seconds. Then, every six seconds, count
how many of the previous two samples are brighter than the most recent light sample.

4

Table 4: The joint table of sensors and rlight
sensors.nid sensors.light rlight.nid rlight.light

0 150 0 150
0 150 1 200
0 150 0 500
0 150 1 400
0 150 0 140
0 150 1 120
1 200 0 150
1 200 1 120
1 200 0 500
1 200 1 400
1 200 0 140
1 200 1 120

SELECT count(*)

FROM sensors, rlight

WHERE sensors.nid = rlight.nid AND sensors.light < rlight.light

PERIOD 2 s

CREATE STORAGE POINT rlight SIZE 3 AS

SELECT nid, light

FROM sensors

PERIOD 6 s

For this application, we need to retain historical data to allow comparison of the most recent samples
with previous readings. Only the most recent three readings need to be stored, so a storage point of
size three is created. We name the storage point rlight. The storage point is a table that stores the nid
and light values of past three time steps. Table 2 and Table 3 show an example of the sensors table
and the rlight table at a certain time for a network of two nodes. Table 2 contains the current light
readings for each node, while Table 3 contains the most recent light readings from the last three time
steps (including the current sample). The first SELECT clause extracts data from these two tables,
which has the same effect as selecting from a joint table of sensors and rlight. The joint table is shown
in Table 4. The first row of this table is composed of the first row from table sensors and the first row
from table rlight. The second row of this table is composed of the first row from table sensors and the
second row from table rlight. All the possible pairings between the rows in sensors and rlight yields the
joint table which contains 12 rows. The row selection condition “sensors.nid = rlight.nid” causes the
comparisons to be done within the same node by filtering out rows with different nid. The selection
condition “sensors.light < rlight.light” selects rows that have previous samples larger than the most
recent sample. Finally, the SELECT count(*) clause counts how many rows are selected. It returns 2
for this example, which corresponds to row 3 and row 10.

5

Figure 2: Simulation output of Example 1.

5 TinySQL Programming Environment

The programming environment, shown in Figure 1, provides tools to check errors in your program and
simulate it. The steps to compose your code, check it, and simulate it follow.

1. Edit your program in the Program Text field. You can modify the template. It is also possible
to delete the template by clicking the Clear button and write your program from the scratch.
The programming template can be loaded to the Program Text field by clicking on the Load
Template button. Note that doing this will overwrite the code in the Program Text field.

2. Enter the name of your program in the File Name box, and click the Save button to save your
program into a file. You can give it any name you like that does not contain spaces.

3. Click the Run button to execute your program in a simulated sensor network. You can check the
results in the Network window and the Base station window. If you want to stop the simulation,
click the Stop button.

Figure 2 shows the simulation output of Example 1 in Section 4. The Network window shows the
sensor readings for each node at each time step. The Base station window shows the data received

6

at the base station. According to the Network window, at time 2 s, nodes 0, 2, and 3 have humidity
larger than 500. The maximum of their light readings is 837. According to the Base station window,
at time 2 s, the result received at the base station is 837, as it should be.

7

	Introduction
	Concepts and Definitions
	TinySQL Programming Language Construct
	Examples Using TinySQL Language
	TinySQL Programming Environment

